
Method for numerical simulation of two-term exponentially correlated colored noise

B. Yilmaz,1,2 S. Ayik,3 Y. Abe,4 A. Gokalp,1 and O. Yilmaz1

1Physics Department, Middle East Technical University, 06531 Ankara, Turkey
2Physics Department, Ankara University, 06100 Ankara, Turkey

3Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505, USA
4Research Center for Nuclear Physics, Osaka University, Osaka, Japan

�Received 10 October 2005; published 10 April 2006�

A method for numerical simulation of two-term exponentially correlated colored noise is proposed. The
method is an extension of traditional method for one-term exponentially correlated colored noise. The validity
of the algorithm is tested by comparing numerical simulations with analytical results in two physical
applications.
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I. INTRODUCTION

In many fields of physics, for instance transport processes
in condensed matter physics, activation processes in chemi-
cal reactions, thermal fission and fusion reactions in nuclear
physics, and stochastic resonance phenomenon and biophys-
ics, generalized Langevin approach of relevant variables pro-
vides a very useful framework for theoretical description of
the reactions under consideration �1–10�. In such a descrip-
tion, evolutions of the relevant variables are determined, in
general, by non-Markovian stochastic differential equations,
which involve memory dependent dissipation and correlated
random forces. For example, in a linear coupling with the
intrinsic degrees of freedom, the temporal evolution of a
single relevant variable is determined by a generalized
Langevin equation given by Eqs. �46� and �47� below in Sec.
IV. In this equation ��t� denotes a Gaussian c-number quan-
tum noise with a correlation function given by �1,2,11�

���t���t��� = �
−�

+� d�

2�
e−i��t−t����

2T
coth���

2T
	2D��� , �1�

where D��� represents the spectral density of the intrinsic
degrees of freedom. Except in the linear regime analytical
solutions of stochastic differential equations are not possible,
therefore, probability distribution of the relevant variables
are obtained by numerically generating a sufficient number
of solutions of the equation of motion. At sufficiently high
temperature, memory effects can be ignored and random
force is usually treated within the Markovian approximation
as a Gaussian white �� correlated� noise. In this case, the
algorithm for numerical simulations of the Langevin equa-
tion is well known �12�.

On the other hand, at low temperatures, often we are
faced with a correlated noise with long correlation time in-
duced by the quantum statistical fluctuations. Therefore, it is
of great interest to develop algorithm to simulate non-
Markovian stochastic processes with correlated noise. In
Refs. �13,14� an algorithm was presented for numerical
simulation of exponentially correlated colored noise. This
procedure was later extended for a correlated noise of linear
superposition of several exponential terms with all positive
coefficients �15�, see also �16�. However, as in the linear

coupling model presented in Eq. �1�, due to quantum statis-
tical effects, the correlation function of the noise may de-
velop a pronounced negative portion and hence it cannot be
represented as a superposition of positive exponential terms
alone �11,17�. This can be seen by employing a Lorentzian
profile for the spectral distribution of intrinsic degrees of
freedom D���. The � integration in Eq. �1� can be carried
out by the residue method. As a result, the correlation func-
tion can be expressed as a superposition of exponential terms
with positive and negative coefficients. An extension of the
implementation procedure to superposition of exponential
terms with positive and negative coefficients may provide a
powerful tool for numerical simulations of quantum noise of
the form given by Eq. �1�. In the present work, we restrict
our treatment to a two-term exponential form and propose an
algorithm for simulation of the correlated noise which is
given as a superposition of two exponential terms with posi-
tive and negative coefficients. The proposed algorithm al-
lows numerical simulations for a wide class of stochastic
processes with correlated noise that exhibits a negative por-
tion.

In Secs. II and III, we explain the formalism and the
simulation algorithm for two-term exponential correlated
noise with positive and negative coefficients. In Sec. IV, we
present applications of the proposed algorithm to free diffu-
sion in momentum space and diffusion over one dimensional
parabolic barrier. The conclusions are given in Sec. V.

II. FORMALISM OF TWO-TERM EXPONENTIALLY
CORRELATED COLORED NOISE

For simplicity, we consider a stochastic equation with a
single variable

ẋ = f�x� + ��t� , �2�

where f�x� is a driving force and � denotes a correlated
Gaussian random noise with zero mean value, ���t��=0, and
correlation given by a linear combinations of two exponen-
tials
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���t���t��� = D1�1e−�1
t−t�
 + D2�2e−�2
t−t�
. �3�

Here, �¯� denotes the average taken over the ensemble gen-
erated by the equation. D1 and D2 are the noise strengths of
the two terms in the right hand side of Eq. �3�, respectively.
�1 and �2 are the inverse of the correlation times of respec-
tive terms. In this case, as an extension of the method in �13�,
it is possible to develop an algorithm for numerical simula-
tion of the exponentially correlated colored noise by intro-
ducing two auxiliary stochastic variables as ��t�=�1�t�
+�2�t�, and Eq. �2� is replaced by a set of three equations
�15�

ẋ = f�x� + ��t� , �4�

�̇1 = − �1�1 + �1g1, �5�

�̇2 = − �2�2 + �2g2. �6�

In these equations, let the stochastic sources g1 and g2 rep-
resent Gaussian random white noises with zero mean and
second moments determined by

�g1�t�g1�t��� = 2D1���t − t�� , �7a�

�g2�t�g2�t��� = 2D2���t − t�� , �7b�

�g1�t�g2�t��� = 2D12� ��t − t�� , �7c�

where D1�, D2�, and D12� are parameters to be determined by
the correlation function Eq. �3�. When both coefficients D1
and D2 are positive, �1 and �2 behave as independent random
numbers and therefore the mixed diffusion coefficient can be
taken to be zero, D12� =0. On the other hand, when one of the
coefficients, D1 or D2, is negative, the mixed diffusion coef-
ficient D12� must take a finite negative value. As discussed in
Sec. III, the range of diffusion coefficients is determined in
terms of the input parameters D1, D2, �1, and �2.

As shown in the Appendix, solutions of Eqs. �5� and �6�
lead to the two-term exponentially correlated colored noise

����t��� = 0, �8a�

����t���t���� = �D̃1 + D̃12�e−�1
t−t�
 + �D̃2 + D̃12�e−�2
t−t�
,

�8b�

where in addition to the ensemble averaging �¯�, an average
�¯� over the initial � values must be carried out with a
Gaussian distribution

P���0�� =
1

2�
	
exp�−

1

2	
��1

2�0�D̃1 + 2�1�0��2�0�D̃12

+ �2
2�0�D̃2�� , �9�

with D̃1=D1��1, D̃2=D2��2, D̃12=D12�
2�1�2

�1+�2
, and 	= D̃1D̃2

− D̃12
2 .
The time evolution of the random variables �1 and �2 is

found by integrating Eqs. �5� and �6�. The integration is per-

formed by splitting the interval into small time steps 	t and
using one of the following methods: Euler method �12�, in-
tegral method �13� and stochastic Runge-Kutta method �14�.
In our calculations, we choose to use the integral algorithm
which is highly accurate. Then using the results Eqs. �A1�
and �A2�, we obtain

�1�t + 	t� = e−�1	t�1�t� + h1�t,	t� , �10�

�2�t + 	t� = e−�2	t�2�t� + h2�t,	t� , �11�

where

h1�t,	t� = �1�
t

t+	t

e−�1�t+	t−s�g1�s�ds , �12�

h2�t,	t� = �2�
t

t+	t

e−�2�t+	t−s�g2�s�ds . �13�

The first and second moments of the h functions are deter-
mined by

�h1�t,	t�� = 0, �14a�

�h2�t,	t�� = 0, �14b�

�h1
2�t,	t�� = D̃1�1 − e−2�1	t� , �14c�

�h2
2�t,	t�� = D̃2�1 − e−2�2	t� , �14d�

�h1�t,	t�h2�t,	t�� = D̃12�1 − e−��1+�2�	t� . �14e�

III. INTEGRAL ALGORITHM FOR TWO-TERM
EXPONENTIALLY CORRELATED COLORED NOISE

The initial � values satisfying the distribution Eq. �9� can
be simulated as

�1�0� = C11�1, �15�

�2�0� = C21�1 + C22�2, �16�

where �1 and �2 are Gaussian random numbers satisfying

��i� = 0, �17�

��i� j� = �ij, i = 1,2, j = 1,2. �18�

Using the correlation properties of �1�0� and �2�0� given by
Eqs. �A11�–�A13�, the coefficients C11, C21, and C22 are
found as

C11 = D̃1
1/2, �19�

C21 =
D̃12

D̃1
1/2

, �20�

C22 = �D̃2 − C21
2 �1/2. �21�
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The time evolution of � values given by Eqs. �10� and
�11� and satisfying Eqs. �14� can be simulated according to

�1�t + 	t� = �1�t�e−�1	t + F11�3, �22�

�2�t + 	t� = �2�t�e−�2	t + F21�3 + F22�4. �23�

In these expressions, �3 and �4 are again uncorrelated
Gaussian random numbers with zero mean and unit vari-
ances, and the coefficients are given by

F11 = �D̃1�1 − e−2�1	t��1/2, �24�

F21 =
D̃12

�D̃1�1 − e−2�1	t��1/2
�1 − e−��1+�2�	t� , �25�

F22 = �D̃2�1 − e−2�2	t� − F21
2 �1/2. �26�

Equations �19�, �21�, and �26� impose certain conditions on
the magnitude of diffusion coefficients, which can be ex-
pressed as

D̃1 
 0, �27�

D̃2 
 0, �28�

D̃12
2

D̃1D̃2

� 1, �29�

D̃12
2

D̃1D̃2

�
�1 − e−2�1	t��1 − e−2�2	t�

�1 − e−��1+�2�	t�2 . �30�

The first two conditions are also necessary for the validity of
the autocorrelation functions �7a� and �7b� at t= t�. Since the
right hand side of Eq. �30� is less than one, we can discard
the third condition Eq. �29�. The right hand side of Eq. �30�
is also rapidly decreasing function of the time step 	t and
approaches its asymptotic value as

lim
	t→0

�1 − e−2�1	t��1 − e−2�2	t�
�1 − e−��1+�2�	t�2 =

4�1�2

��1 + �2�2 , �31�

which is a stronger condition. Finally, besides the conditions
Eqs. �27� and �28�, we have

D̃12
2

D̃1D̃2

�
4�1�2

��1 + �2�2 . �32�

With these conditions in mind, we turn our attention in ex-

pressing the diffusion coefficients D̃1, D̃2, and D̃12 in terms
of the given parameters D1, D2, �1, and �2. Equating the Eq.
�3� to Eq. �8b�, we have

D1�1 = D̃1 + D̃12, �33�

D2�2 = D̃2 + D̃12. �34�

Here, we have two equations but three unknown parameters

D̃1, D̃2, and D̃12 which means that one of these parameters is

free and can be fixed in several ways. We choose to fix D̃12
by convention. Then using these two equations, the condition
Eq. �32� can be written as

f�D̃12� = −
��1 − �2�2

4�1�2
D̃12

2 − �D1�1 + D2�2�D̃12 + D1�1D2�2


 0. �35�

If both the parameters D1 and D2 are positive, the inequality

above will always be valid for D̃12=0. Hence the algorithm
reduces to the superposition method �15�. If D1D2�0, we
have a more interesting case, in which the correlation func-
tion may have a negative portion, see Fig. 1. Then the maxi-

mum of the function f�D̃12� is given by

f�D̃12
�max�� =

�1�2

��1 − �2�2 �D1�1 + D2�2�2 + D1�1D2�2 
 0,

�36�

where

D̃12
�max� = −

2�1�2

��1 − �2�2 �D1�1 + D2�2� . �37�

Once the inequality �36� is satisfied, we have at least one

solution for D̃12, namely Eq. �37�. The validity of correlation
function Eq. �3� at t= t� as well as the condition �36� impose
certain restrictions on the given parameters as

D1 + D2 
 0, �38�

D1�1 + D2�2 
 0, �39�

D1�1
2 + D2�2

2 
 0. �40�

Even though the conditions above seem to be restrictions
only due to the algorithm, they are indeed also physical re-
strictions. For any multiexponential correlation function of
the form

FIG. 1. Four examples of the correlation function, Eq. �3� with
D1D2�0 are indicated. Two of the examples are unphysical due to
violation of one of the conditions, Eqs. �38�–�40�.
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��
t − t�
� = ���t���t��� = �
i

Di�ie
−�i
t−t�
, �41�

there are three physical restrictions:

�1� �iDi�i
0. This is for the consistency of the correla-
tion function at t= t�.

�2� �iDi
0. In the classical �Markovian� limit, that is all
�i→�, the correlation function reduces to the form
2�iDi��t− t��. And again for consistency in the classical limit
one needs this condition.

�3� �iDi�i
2
0. The time derivative of the correlation

function at t= t� must be negative or zero indicating the ini-
tial decrease of the correlation function. The equality case
corresponds to Gaussian-like correlation functions where the
roots of Eq. �35� are equal and given by Eq. �37�.

The correlated algorithm incorporates these physical re-
strictions naturally. The four possible shapes of the correla-
tion function with two exponential terms satisfying the con-
ditions D1D2�0 and Eq. �39� are shown in Fig. 1 for four
arbitrary examples. Two of the examples are unphysical due
to violation of one of the conditions.

For a given correlation function in the form Eq. �3�, which
can be corresponding to a specific physical system or can be

a fit of a correlation function, one must fix the value of D̃12
which in general can assume any value between the roots of
Eq. �35�. The numerical computations show that among these

values the choice of D̃12 is not very affective, hence it is
appropriate to fix it as in Eq. �37�. Then, the simulation al-
gorithm to the first order follows as

x�t + 	t� = x�t� + �f�x� + �1�t� + �2�t��	t , �42�

where �1�t+	t� and �2�t+	t� are given by Eqs. �22� and �23�
with the initial values determined by Eqs. �15� and �16�.

IV. TEST AND APPLICATION OF THE CORRELATED
ALGORITHM

A. Test of the algorithm

In order to test the accuracy of the algorithm, we apply it
to the free diffusing particle in momentum space with the
two-term exponentially correlated noise where the analytic
solution can be easily obtained. The corresponding simple
stochastic differential equation is given by

ṗ = ��t� , �43�

where ��t� is a mean-zero Gaussian random number with the
correlation Eq. �3�. The average value of p does not change
in time and remains equal to the initial value, �p�t��= p�0�,
and the variance can be easily calculated to give

�p
2�t� = − 2�D1

�1
�1 − e−�1t − �1t� +

D2

�2
�1 − e−�2t − �2t�� .

�44�

In the simulations, we consider a correlation function of
the form

��t� = ���t + s���s�� = 7e−4
t
 − 3e−2
t
. �45�

We fix the mixed diffusion coefficient to be D̃12=−16, take
the time step as 	t=10−2 and the sharp initial value p�0�
=5. Figure 2 shows a comparison of exact correlation func-
tion �solid line� with simulations �dashed line with 103 initial
values and dotted line with 104 initial values�. Figures 3 and
4 show a comparison of the analytical results for the mean
value and the variance of the variable p with simulations.
Simulations carried out with 104 and 105 realizations are
indicated by dashed lines and dotted lines respectively. As
seen from the figures, already with 105 realization, the simu-
lations provide a perfect agreement with the analytical re-
sults.

B. Application to generalized Langevin equation

Now, let us consider a more realistic system where a par-
ticle undergoes a diffusion over a parabolic barrier, then the

FIG. 2. The comparison of the exact correlation function with
simulated ones �dashed line with 103 initial values and dotted line
with 104 initial values�.

FIG. 3. The comparison of the exact average of p with simulated
ones �dashed line with 104 realizations of the algorithm and dotted
line with 105 realizations�.

YILMAZ et al. PHYSICAL REVIEW E 73, 046114 �2006�

046114-4



system can be described by the following generalized Lange-
vin equation �GLE�

q̇�t� = p�t� , �46�

ṗ�t� = −
�V

�q
− �

0

t

��t − t��p�t��dt� + ��t� , �47�

where

��t� = D1�1e−�1t + D2�2e−�2t �48�

and the potential is

V�q� = 1
2 �q0

2 − q2�t�� . �49�

Here, we assume that the memory kernel has a two-term
exponential form. From the fluctuation-dissipation theorem,
we have

���t�� = 0, �50�

���t���t��� = ��
t − t�
� . �51�

The mass of the particle as well as the temperature is chosen
to be unity for convenience. Equation �47� can be written as

ṗ = −
�V

�q
+ �̃1 + �̃2, �52�

�̇̃1 = − �1�̃1 − D1�1p + �1g1, �53�

�̇̃2 = − �2�̃2 − D2�2p + �2g2, �54�

where g1 and g2 are the correlated white noises Eqs. �7� and

�̃1�t� = �1�t� − D1�1�
0

t

e−�1�t−t��p�t��dt�, �55�

�̃2�t� = �2�t� − D2�2�
0

t

e−�2�t−t��p�t��dt�. �56�

Here �1 and �2 are given by Eqs. �A1� and �A2�. Note that
the initial values of both �̃i and �i are the same �i=1,2�. With
this knowledge, the time evolution of the system to the first
order follows as

q�t + 	t� = q�t� + p�t�	t , �57�

p�t + 	t� = p�t� + �−
�V

�q
+ �̃1�t� + �̃2�t�		t , �58�

�̃1�t + 	t� = �̃1�t�e−�1	t − D1p�t��1 − e−�1	t� + F11�3,

�59�

�̃2�t + 	t� = �̃2�t�e−�2	t − D2p�t��1 − e−�2	t� + F21�3 + F22�4,

�60�

where the F functions are the ones given in Eqs. �24�–�26�.
By extending the approach of �18� to two-term exponen-

tial correlation, it is possible to obtain an analytical solution
to the given GLE, Eq. �47�, that is, to find the mean values,
�p�t�� and �q�t�� and the variances, �q

2�t�, �p
2�t�, and �pq

2 �t�
�19�. The joint probability distribution of p�t� and q�t� is a
two dimensional Gaussian determined by the mean values
and the variances. The analytical expression for passing
probability over the parabolic barrier is given by �20,21�

P�t,q0,p0� = �
0

� 1


2��q
2�t�

exp�−
�q − �q�t���2

2�q
2�t� 	dq

=
1

2
erfc�−

�q�t��

2�q�t�

	 , �61�

where �q�t�� and �q
2�t� denotes the mean value and variance

of the variable q. The analytical expressions for these quan-
tities are given by

�q�t�� = R�t�q0 + Q�t�p0, �62�

where

R�t�

= �
i=1

4
si�si + �1��si + �2� + D1�1�s + a2� + D2�2�si + �1�

�n�i
�si − sn�

esit,

�63�

Q�t� = �
i=1

4
�si + �1��si + �2�

�n�i
�si − sn�

esit, �64�

and

FIG. 4. The comparison of the exact variance of p and simulated
ones �dashed line with 104 realizations of the algorithm and dotted
line with 105 realizations�.
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�q
2�t� = �

i,j=1

4
�si + �1��si + �2��sj + �1��sj + �2�

�n�i
�si − sn��m�j

�sj − sm�
�D1�1A�t,�1�

+ D2�2A�t,�2�� , �65�

where

A�t,�� =
1

si + sj
� 1

si + �
+

1

sj + �
�e�si+sj�t − � e�si−��t

�si − ���sj + ��

+
e�sj−��t

�si + ���sj − ��� +
1

si + sj
� 1

si − �
+

1

sj − �
� . �66�

In these expressions si �i=1,2 ,3 ,4�, denote the roots of the
secular equation

s4 + ��1 + �2�s3 + ��1�2 + D1�1 + D2�2 − 1�s2

+ ��1�2�D1 + D2� − ��1 + �2��s − �1�2 = 0, �67�

which is the denominator of the Laplace transform of q�t�
derived from the given GLE.

The passing probability over the parabolic barrier can be
numerically calculated by generating sufficiently large num-
ber of events where Eqs. �57�–�60� are used for each event,
counting the number of events for which the particle diffused
over the barrier and dividing this number by the total number
of events. On the other hand, the analytical result of the
overpassing probability can be obtained by using Eq. �61�
which, for large times, approaches an asymptotic value that
can be written as a function of the initial kinetic energy K
= 1

2 p0
2 and the barrier height B= 1

2q0
2.

For the computations, we choose the correlation function
as in Eq. �45� again and take sharp initial values for q and p
as q0=−2 and p0= �2K�1/2 where K is the initial kinetic en-
ergy. The numerical computations �simulations� are obtained
with the time step 	t=10−2, the mixed diffusion coefficient

D̃12=−16 which is found from Eq. �37�, 104 realizations of
the algorithm and time iteration up to t=10 which is enough
for the probability to reach its asymptotic value. The numeri-
cal �dashed line� and analytical �solid line� results are shown
in Fig. 5 where the passing probability is plotted as a func-
tion of the initial kinetic energy. The results are in a good
agreement with each other.

V. CONCLUSION

In a previous work �15�, a method is proposed for simu-
lation of the general Langevin equation with a correlated
noise. However, applicability of this method is restricted to
the situation in which the correlation function of the noise is
expressed as a linear combination of positive exponential
terms. In certain situations, for example, in a linear coupling
of the relevant degrees with the intrinsic modes of the sys-
tem, the quantum noise may exhibit a pronounced negative
portion. In such cases, the method cannot be applied to simu-
late generalized Langevin equation. In this paper, we propose
an extension of this method that can be applied for numerical
simulation of general Langevin equation in which quantum
noise can be approximated by a linear combination of expo-

nential terms with positive and negative coefficients. We de-
scribe an explicit description of the numerical algorithm and
present two different application in order to test the accuracy
of the proposed algorithm. Comparison of the numerical
simulations with the analytic results verify the accuracy of
the proposed algorithm.
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APPENDIX

The solution of Eqs. �5� and �6� are given by

�1�t� = e−�1t�1�0� + �1�
0

t

e−�1�t−s�g1�s�ds , �A1�

�2�t� = e−�2t�2�0� + �2�
0

t

e−�2�t−s�g2�s�ds . �A2�

Since ��t�=�1�t�+�2�t�, we have

���t�� = e−�1t��1�0�� + e−�2t��2�0�� . �A3�

Let �1�0� and �2�0� be mean-zero Gaussian random numbers,
then averaging over these random numbers we find

����t��� = 0. �A4�

By using the Eqs. �7�, the correlations of �1 and �2 can be
found as

FIG. 5. The passing probability over the barrier is plotted versus
the initial kinetic energy in arbitrary units. The analytical and nu-
merical results �dashed line� are shown for the correlation ��t�
=7e−4
t
−3e−2
t
. The numerical computations are done with the time
step, 	t=10−2 and 104 realizations.
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��1�t��1�t��� = D̃1e−�1
t−t�
 + ���1
2�0�� − D̃1�e−�1�t+t��,

�A5�

��2�t��2�t��� = D̃2e−�2
t−t�
 + ���2
2�0�� − D̃2�e−�2�t+t��,

�A6�

��1�t��2�t��� = D̃12e
−�12
t−t�
 + ���1�0��2�0�� − D̃12�e−��1t+�2t��,

�A7�

where �12=�1 for t
 t� and �12=�2 for t�
 t. Again averag-
ing over the random numbers �1�0� and �2�0� we find

���1�t��1�t���� = D̃1e−�1
t−t�
, �A8�

���2�t��2�t���� = D̃2e−�2
t−t�
, �A9�

���1�t��2�t���� = D̃12e
−�12
t−t�
, �A10�

once these random numbers satisfy the following equations

���1
2�0��� = D̃1, �A11�

���2
2�0��� = D̃2, �A12�

���1�0��2�0��� = D̃12. �A13�

Now we have enough information to build the autocorrela-
tion of ��t� and it is found to be

����t���t���� = �D̃1 + D̃12�e−�1
t−t�
 + �D̃2 + D̃12�e−�2
t−t�
.
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